Stilbene Derivatives from *Cissus quadrangularis*

Saburi A. Adesanya,^{†,‡} René Nia,[§] Marie-Thérèse Martin,[†] Najeh Boukamcha,[†] Alain Montagnac,[†] and Mary Païs^{*,†}

Institut de Chimie des Substances Naturelles, C.N.R.S., 91198 Gif-sur-Yvette Cedex, France, and Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria

Received June 4, 1999

Three new stilbene derivatives, quadrangularins A, B, and C (2-4), have been isolated from the stems of Cissus quadrangularis, together with four known ones: resveratrol, piceatannol, pallidol (1), and parthenocissine A (5). Structure elucidation of the new compounds was achieved using 2D NMR experiments.

Previous studies on Cissus quadrangularis L. (Vitaceae) had led to the isolation of tetracyclic triterpenoids.^{1,2} We report here the isolation from the stems of this plant of the known stilbenes resveratrol, piceatannol, and pallidol (1), together with three new related stilbene derivatives, quadrangularins A, B, and C (2-4). Another related stilbene parthenocissin A (5), which has been found recently in Parthenocissus quinquefolia,3 and the known flavonols, quercetin and kaempferol, were further isolated.

Quadrangularin A (2) gave a molecular peak in the HREIMS at m/z 454.1418, indicating the molecular formula $C_{28}H_{22}O_6$ to be isomeric with pallidol (1) and parthenocissin A (5). The ¹H NMR spectrum showed signals similar to those of 1: an AA'BB' system at δ 6.87 and 6.62 (2H, d, J = 8.5 Hz) corresponding to the *p*-disubstituted phenyl ring C along with two meta-coupled protons (δ 6.69 and 6.16, d, J = 2 Hz) and two aliphatic protons (δ 4.16, 4.02, s) of an indene AB ring system. The same signals were also found in 5. Additional resonances in 2 indicated the

presence of two other benzene rings: the 1,3,5 trisubstituted ring D (δ 6.21, 2H, d, J = 2 Hz and δ 6.09, t, J = 2 Hz) and the *p*-disubstituted ring E (δ 7.11 and 6. 59, 2H, d, J = 8.5Hz), together with an olefinic proton singlet at δ 6.97. Similar signal patterns were observed in the spectrum of parthenocissin A (5), with somewhat different chemical shifts. These results suggested that **2** was the *E* isomer of compound 5. The E geometry of the double bond was supported by the NOESY correlations H-8/H-1 and H-6/ H-2", while the ¹³C and the whole 2D NMR spectra (Table 1) entirely confirmed structure 2. Especially, the HMBC correlations H-5/C-4, C-1', H-6/C-2", and H-8/C-6,C-2"" showed unambiguously the positions of the aromatic rings on the five-membered B ring. In addition, the NOESY cross-peak H-6/H-2' and H-5/H-2" indicated that the relative stereochemistry at C-5 and C-6 was trans (depicted 5β and 6α as for **1** and **5**). A compound named ampelopsin D has been described previously,⁴ whose NMR data are quite similar to those of 2. The only structural variation from 2 was the relative position of rings B and C, which were interconverted. In fact, the reported structure of ampelopsin D is probably not exact and should be 2.

Quadrangularin B (3) showed aromatic ¹H NMR signals similar to those of 2, but the olefin signal was absent. Instead, additional resonances appeared in the aliphatic region, especially those of an C₂H₅O group: the Me triplet resonated at δ 0.96 (J = 7 Hz) and the two methylene protons at δ 2.96 and 3.20, respectively. This suggested that quadrangularin B (3) resulted from the addition of ethanol on either the olefinic derivative 2 or 5. The mass spectrum showed no molecular ion peak, but a peak at m/z 454 [M -C₂H₅OH]⁺. The structure of quadrangularin B was supported by its ¹³C and 2D spectra (Table 1). The relative stereochemistry at C-5 and C-6 was similar to that of 3 as shown by the NOESY cross-peaks H-6/H-2' and H-5/H-2". To establish the configuration of C-7 and C-8, a NOESY spectrum was run at low temperature, so that the compound adopts a preferred conformation. The correlations H-7/H-2" was diagnostic of a H-7 β configuration, while the correlation H-1/H-2" indicated the proximity of the A and E rings. An additional cross-peak H-8/H-2' was observed, and examination of molecular models showed that only the C-8S isomer could adopt a conformation at C-8 in accordance with the two latter-mentioned NOEs.

Quadrangularin C (4) was a stereoisomer of quadrangularin B, as shown by its 1D NMR data (Table 1), which were close to those of compound **3**. Again, the molecular ion peak could not be obtained, and only a peak at m/z 454 $[M - C_2H_5OH]^+$ was observed. The relative stereochemistry

10.1021/np9902744 CCC: \$18.00 © 1999 American Chemical Society and American Society of Pharmacognosy Published on Web 10/30/1999

^{*} To whom correspondence should be addressed. Tel.: 33169823090. Fax: 33169077247. E-mail: Mary.Pais@icsn.cnrs-gif.fr. † Institut de Chimie des Substances Naturelles, C.N.R.S.

[‡] Present address : Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria.

[§] Department of Pharmacognosy, Obafemi Awolowo University.

Table 1. ¹³C (62.5 MHz) and ¹H NMRData (400 MHz) for Compounds 2-4 in CD₃OD^a

	2				3				4			
position	$\delta_{\rm C}$	$\delta_{\rm H}$ (J Hz)	HMBC	NOESY ^b	$\delta_{\rm C}$	δ_{H} (J Hz)	HMBC	NOESY ^b	$\delta_{\rm C}$	$\delta_{ m H}$ (J Hz)	HMBC	NOESY
1	98.5	6.69 d (2)	2,3,4a,7	8	106.3	5.62 d (2)	3,4a	7,2‴	106.6	6.67 d (2)	4a	7
2	159.6				158.5				159.0			
3	103.8	6.16 d (2)	1,2,4,4a		102.5	6.12 d (2)	1,2,4,4a		102.6	6.24 d (2)	1,2,4,4a	
4	156.1				155.3				155.3			
4a	125.9				123.8				123.3			
5	58.1	4.16 s	4,4a,6,7,7a,- 1',2',1"	2′,2″	56.0	4.21 d (3)	4a,6,7a,- 1′,2′,1″	6,2′,2″	56.0	4.17 d (2.5)	4,4a,6,7,7a,1',2'	6,2′,2″
6	61.2	4.02 s	4a,5,7,7a,8,- 1'.1".2"	2′,2″,2‴	60.0	3.39 m	4a,7a	8,2′,2″	60.0	2.74 dd (3,2.5)	1,4a,5,7,7a,8,1',1"	8,2',2", 2"
7	143.4		, ,		61.7	3.31 m	7a,1″	8,2",2"''	61.1	3.27 m	4a,5,6,7a,8,1"	8,2‴
7a	147.7				147.3				149.8			
8	123.1	6.97 s	6,7,7a,2'''		85.8	3.95 d (8.5)	6,7,7a,9,2"	9b,2',2'''	86.8	3.95 d (9.5)	7,7a,9,1",2"	2',2'''
9					64.6	a 2.96 dq (9.7)		9b,10	65.0	a 3.14 dq (9.5,7)	8,10	9b
						b 3.20 dq (9,7)		10		b 3.28 dq (9.5,7)	8,10	10
10					15.3	0.96 t (7)	9		15.2	1.09 t (7)	9	
1′	138.5				138.5				138.2			
2',6'	128.9	6.87 d (8.5)	5,3',4',6'	3′	129.5	6.81 d (8.5)	5,4',6'		129.6	6.79 d (8.5)	5,4',6'	
3',5'	116.0	6.62 d (8.5)	1',4',5'		115.8	6.65 d (8.5)	1',4',5'		115.8	6.68 d (8.5)	1',4',5'	
4'	156.6				156.3				156.5			
1″	149.8				151.6				151.5			
2″,6″	106.6	6.21 d (2)	6,3",4",6"	2′′′	106.6	6.09 d (2)	6,3",4",6"		106.2	5.73 d (2)	6,3",4",6"	
3'', 5''	159.6				159.3				159.2			
4″	101.6	6.09 t (2)	2",3"		101.3	6.07 t (2)	2'',3''		101.2	5.99 t (2)	2",3"	
1‴	130.3				132.8				133.3			
2‴,6‴	131.2	7.11 d (8.5)	8,4‴,6‴	3‴	130.5	6.95 d (8.5)	8,4‴,6‴		130.5	6.66 d (8.5)	8,3‴,4‴,6‴	
3‴,5‴	116.0	6.59 d (8.5)	1‴,4‴,5‴		115.8	6.12 d (8.5)	1‴,4‴,5‴		115.8	6.60 d (8.5)	1''',4''',5'''	
4‴	156.5				158.0				157.9			

^a Assignments based on 2D experiments. ^b Spectrum measured at 0 °C.

at C-5 and C-6 was similar to those of compounds 2 and 3 owing to the NOESY cross-peaks H-6/H-2' and H-5/H-2". In the spectrum at low temperature, the correlation between H-1 and and H-2" was absent, indicating that the E ring was no longer close to ring A. This was also supported by the lowfield shift (about 1 ppm) of H-1 in 4 compared to H-1 in 3. Conversely, ring E was close to ring D as shown by the correlations H-6/H-2" and H-6/H-8. These correlations further indicated a H-7 β configuration similar to that of 3. Therefore, compound 4 varied from 3 only by the configuration of C-8. The C-8R configuration was confirmed by the cross-peak H-7/H-2''' and $\bar{\text{H}}$ -8/H-2', which, in addition to those mentioned above, could be observed only for the C-8R isomer. Compounds 3 and 4 may be artifacts derived from 2 and/or 5 by addition of EtOH during extraction.

Experimental Section

General Experimental Procedures. Optical rotations at 20 °C were obtained on a Perkin–Elmer 241 polarimeter. Spectra were recorded as follows: UV (MeOH), Varian Cary 100; NMR, Bruker AC 250 (¹H and ¹³C NMR spectra) and AMX 400 (2D NMR spectra); HREIMS, Kratos MS 9. Vacuum-liquid chromatography (VLC) and column chromatography, Si gel Merck 60 H. Semipreparative HPLC, column Ultrasphere C₁₈ (10 × 250 mm), MeOH–H₂O (40:60), flow rate 3 mL/mn, UV detection.

Plant Material. Climbing stems of *Cissus quadrangularis* (Vitaceae) were collected in June 1997, on Ondo Road, Ife-Ife, Nigeria. The material was identified and authenticated by Mr. G. A. Adesakin of the Herbarium, Department of Pharmacognosy, Obafemi Awolowo University, Ile-Ife, Nigeria. A voucher specimen (CQ/Pharm cog/12) is deposited at the Herbarium of the Department of Pharmacognosy, Obafemi Awolowo University, Ile-Ife, Nigeria.

Extraction and Isolation. The dried plant material (10 kg) was extracted with with EtOH $-H_2O$ (4:1), yielding a crude extract (87 g) that was partitioned beween H_2O and *n*-hexane, CH₂Cl₂, EtOAc, and BuOH, successively. The CH₂Cl₂ extract (4 g) afforded an insoluble fraction, which was recrystallized from CH₂Cl₂, yielding quercetin (210 mg). The EtOAc extract

(28 g) was fractionated by VLC using CH₂Cl₂ containing increasing amounts of MeOH. The fraction eluted with CH₂Cl₂-MeOH (95:5) was chromatographed on a Si gel column with *n*-heptane-EtOAc (4:1) yielding resveratrol (50 mg), piceatannol (20 mg), and kaempferol (30 mg). The fraction eluted with CH₂Cl₂-MeOH (90-10) was submitted to successive column chromatography and HPLC, yielding quadrangularin A (2) [90 mg; (1) column chromatography EtOAc-MeOH 99:1; (2) semipreparative HPLC], a mixture of quadrangularins B (3) and C (4) [60 mg; (1) column chromatography CH_2Cl_2 -MeOH 99:1; (2) semipreparative HPLC], parthenocissin A (2) [70 mg; (1) column chromatography EtOAc-MeOH 99:1. (2) semipreparative HPLC], and pallidol (1) (55 mg; (1) column chromatography EtOAc-MeOH 98:2; (2), semipreparative HPLC]. The mixture of 3 and 4 was further separated by semipreparative HPLC on an analytical column (Novapak C₁₈, 4 \times 125, CH₂Cl₂-MeOH 35:75, flow rate 1 mL/mn, UV detection) yielding 3 (4 mg) and 4 (8 mg). The known stilbenes resveratrol, piceatannol, and pallidol were identified by comparison of their NMR data with those reported.⁵⁻⁷

Quadrangularin A (2): amorphous gum, $[\alpha]_D - 2^\circ$ (MeOH); UV λ_{max} (log ϵ) 226 (sh) (4.68), 290 (sh) (4.25), 322 (4.39), 345 (sh) (4.25) nm; ¹H and ¹³C NMR, see Table 1; HREIMS *m*/*z* 454.1418, M⁺ (C₂₈H₂₂O₆, Δ 0.2 mmu).

Quadrangularin B (3): amorphous gum, $[\alpha]_D 0^\circ$ (MeOH); UV λ_{max} (log ϵ) 226 (sh) (4.68), 280 (3.87) nm; ¹H and ¹³C NMR, see Table 1; EIMS *m*/*z* 454, [M - C₂H₅OH]⁺.

Quadrangularin C (4): amorphous gum, $[\alpha]_D - 1^\circ$ (MeOH); UV λ_{max} (log ϵ) 226 (sh) (4.68), 280 (3.87) nm; ¹H and ¹³C NMR, see Table 1; EIMS *m*/*z* 454, [M - C₂H₅OH]⁺.

References and Notes

- Bhutani, K. K.; Kapoor, R.; Atal, C. K. Phytochemistry 1984, 23, 407– 410.
- (2) Gupta, M. M.; Verma, R. K. *Phytochemistry* 1990, *29*, 336–337.
 (3) Tanaka, T.; Iinuma, M.; Murata, H. *Phytochemistry* 1998, *48*, 1045–
- (3) Tanaka, T.; linuma, M.; Murata, H. *Phytochemistry* 1998, 48, 1045– 1049.
- (4) Oshima, Y.; Ueno, Y. *Phytochemistry* **1993**, *33*, 179–182.
- (5) Nakajimah, K., Taguchi, H.; Endo, T.; Yosioka, I. *Chem. Pharm. Bull.* **1978**, *26*, 3050–3057.
 (6) Kashiwada, Y.; Nonaka, G.; Nishioka, I. *Chem. Pharm. Bull.* **1984**,
- (6) Kashiwada, T., Nohaka, G., Nishioka, I. Chem. Fham. Bull. 1994, 32, 3501-3317.
 (7) Ohyama, M.; Tanaka, T.; Iinuma, M.; Gorro, K. Chem. Pharm. Bull.
- (7) Ohyama, M.; Tanaka, T.; Iinuma, M.; Gorro, K. Chem. Pharm. Bull. 1994, 46, 2117–2120.

NP9902744