Stilbene Derivatives from Cissus quadrangularis

Saburi A. Adesanya, ${ }^{\dagger, \mp}$ René Nia, ${ }^{\S}$ Marie-Thérèse Martin, ${ }^{\dagger}$ Najeh Boukamcha, ${ }^{\dagger}$ Alain Montagnac, ${ }^{\dagger}$ and Mary Païs*,†
Institut de Chimie des Substances Naturelles, C.N.R.S., 91198 Gif-sur-Y vette Cedex, France, and Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awol owo University, Ilelfe, Nigeria

Received J une 4, 1999
Three new stilbene derivatives, quadrangularins A, B, and C (2-4), have been isolated from the stems of Cissus quadrangularis, together with four known ones: resveratrol, piceatannol, pallidol (1), and parthenocissine A (5). Structure elucidation of the new compounds was achieved using 2D NMR experiments.

Previous studies on Cissus quadrangularis L. (Vitaceae) had led to the isolation of tetracydic triterpenoids. ${ }^{1,2}$ We report here the isolation from the stems of this plant of the known stilbenes resveratrol, piceatannol, and pallidol (1), together with three new related stilbene derivatives, quadrangularins A, B, and C (2-4). Another related stilbene parthenocissin A (5), which has been found recently in Parthenocissus quinquefolia, ${ }^{3}$ and the known flavonols, quercetin and kaempferol, were further isolated.

1

$38 S$ 48 R

Quadrangularin A (2) gave a molecular peak in the HREIMS at $\mathrm{m} / \mathrm{z} 454.1418$, indicating the mol ecular formula $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{6}$ to beisomeric with pallidol (1) and parthenocissin A (5). The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals similar to those of $\mathbf{1}$: an $A^{\prime} A^{\prime} B^{\prime}$ system at $\delta 6.87$ and 6.62 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.5 \mathrm{~Hz}$) corresponding to the p -disubstituted phenyl ring C along with two meta-coupled protons ($\delta 6.69$ and 6.16 , $\mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}$) and two aliphatic protons ($\delta 4.16,4.02, \mathrm{~s}$) of an indene $A B$ ring system. The same signals were also found in 5. Additional resonances in 2 indicated the

[^0]presence of two other benzene rings: the 1,3,5 trisubstituted ring $\mathrm{D}(\delta 6.21,2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2 \mathrm{~Hz}$ and $\delta 6.09, \mathrm{t}, \mathrm{J}=2 \mathrm{~Hz}$) and thep-disubstituted ring E ($\delta 7.11$ and $6.59,2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5$ Hz), together with an olefinic proton singlet at δ 6.97. Similar signal patterns were observed in the spectrum of parthenocissin A (5), with somewhat different chemical shifts. These results suggested that $\mathbf{2}$ was the E isomer of compound 5. The E geometry of the double bond was supported by the NOESY correlations $\mathrm{H}-8 / \mathrm{H}-1$ and $\mathrm{H}-6 /$ $\mathrm{H}-2^{\prime \prime \prime}$, while the ${ }^{13} \mathrm{C}$ and the whole 2D NMR spectra (Table 1) entirely confirmed structure 2. Especially, the HMBC correlations H-5/C-4, C-1', H-6/C-2", and H-8/C-6,C-2"' showed unambiguously the positions of the aromatic rings on the five-membered B ring. In addition, the NOESY cross-peak $\mathrm{H}-6 / \mathrm{H}-2^{\prime}$ and $\mathrm{H}-5 / \mathrm{H}-2^{\prime \prime}$ indicated that the relative stereochemistry at C-5 and C-6 was trans (depicted 5β and 6α as for $\mathbf{1}$ and 5). A compound named ampelopsin D has been described previously, ${ }^{4}$ whose NMR data are quite similar to those of $\mathbf{2}$. The only structural variation from 2 was the relative position of rings B and C, which were interconverted. In fact, the reported structure of ampelopsin D is probably not exact and should be 2.

Quadrangularin B (3) showed aromatic ${ }^{1}$ H NMR signals similar to those of $\mathbf{2}$, but the olefin signal was absent. Instead, additional resonances appeared in the aliphatic region, especially those of an $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$ group: the Me triplet resonated at $\delta 0.96(\mathrm{~J}=7 \mathrm{~Hz})$ and the two methylene protons at $\delta 2.96$ and 3.20 , respectively. This suggested that quadrangularin $B(3)$ resulted from the addition of ethanol on either the olefinic derivative $\mathbf{2}$ or $\mathbf{5}$. The mass spectrum showed no molecular ion peak, but a peak at m/z 454 [M $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]^{+}$. The structure of quadrangularin B was supported by its ${ }^{13} \mathrm{C}$ and 2D spectra (Table 1). The relative stereochemistry at C-5 and C-6 was similar to that of $\mathbf{3}$ as shown by the NOESY cross-peaks H-6/H-2' and H-5/H-2". To establish the configuration of $\mathrm{C}-7$ and $\mathrm{C}-8$, a NOESY spectrum was run at low temperature, so that the compound adopts a preferred conformation. The correlations $\mathrm{H}-7 / \mathrm{H}-2^{\prime \prime}$ was diagnostic of a $\mathrm{H}-7 \beta$ configuration, while the correlation $\mathrm{H}-1 / \mathrm{H}-2^{\prime \prime \prime}$ indicated the proximity of the A and E rings. An additional cross-peak $\mathrm{H}-8 / \mathrm{H}-2^{\prime}$ was observed, and examination of molecular models showed that only the C-8S isomer could adopt a conformation at C-8 in accordance with the two latter-mentioned NOEs.
Quadrangularin C (4) was a stereoisomer of quadrangularin B, as shown by its 1D NMR data (Table 1), which were close to those of compound 3. Again, the molecular ion peak could not be obtained, and only a peak at m/z 454 [M - $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]^{+}$was observed. The relative stereochemistry

Table 1. ${ }^{13} \mathrm{C}\left(62.5 \mathrm{MHz}\right.$) and ${ }^{1} \mathrm{H}$ NMRData (400 MHz) for Compounds $\mathbf{2 - 4}$ in $\mathrm{CD}_{3} \mathrm{OD}^{\text {a }}$

	2				3				4			
position	$\delta_{\text {c }}$	$\delta_{\mathrm{H}}(\mathrm{J} \mathrm{Hz)}$	HMBC	NOESY ${ }^{\text {b }}$	$\delta_{\text {c }}$	$\delta_{\mathrm{H}}(\mathrm{J} \mathrm{Hz})$	HMBC	NOESY ${ }^{\text {b }}$	$\delta_{\text {c }}$	$\delta_{\mathrm{H}}(\mathrm{J} \mathrm{Hz})$	HMBC	NOESY
1		6.69 d (2)	2,3,4a, 7	8	106.3	5.62 d (2)	3,4a	7,2"'	106.6	6.67 d (2)	4a	7
2	159.6				158.5				159.0			
3	103.8	6.16 d (2)	1,2,4,4a		102.5	$6.12 \mathrm{~d}(2)$	1,2,4,4a		102.6	6.24 d (2)	1,2,4,4a	
4	156.1				155.3				155.3			
4a	125.9				123.8				123.3			
5		4.16 s	$\begin{gathered} \text { 4,4a,6,7,7a,- } \\ 1^{\prime}, 2^{\prime}, 1^{\prime \prime} \end{gathered}$	$2^{\prime}, 2^{\prime \prime}$	56.0	4.21 d (3)	$\begin{gathered} 4 a, 6,7 a,- \\ 1^{\prime}, 2^{\prime}, 1^{\prime \prime} \end{gathered}$	6,2', ${ }^{\prime \prime}$		4.17 d (2.5)	4,4a,6,7,7a, $1^{\prime}, 2^{\prime}$	6,2', $2^{\prime \prime}$
6		4.02 s	$\begin{gathered} 4 \mathrm{a}, 5,7,7 \mathrm{a}, 8,- \\ 1^{\prime}, 1^{\prime \prime}, 2^{\prime \prime} \end{gathered}$	$\text { ', } 2^{\prime \prime}, 2^{\prime \prime \prime}$	60.0	3.39 m	$4 \mathrm{a}, 7 \mathrm{a}$	8,2', $2^{\prime \prime}$		2.74 dd (3,2.5)	1,4a,5,7,7a,8, $1^{\prime}, 1^{\prime \prime}$	8,2', $2^{\prime \prime}, 2^{\prime \prime \prime}$
7	143.4				61.7	3.31 m	7a, $1^{\prime \prime}$	8,2", $2^{\prime \prime \prime}$		3.27 m	$4 a, 5,6,7 a, 8,1^{\prime \prime}$	8,2"'
7a	147.7				147.3				149.8			
8	123.1	6.97 s	6,7,7a, $2^{\prime \prime \prime}$		85.8	3.95 d (8.5)	6,7,7a,9,2"	$9 \mathrm{~b}, 2^{\prime}, 2^{\prime \prime \prime}$		3.95 d (9.5)	7,7a,9,1", ${ }^{\prime \prime}$	$2^{\prime}, 2^{\prime \prime \prime}$
9					64.6	a 2.96 dq (9.7)		9b,10		a 3.14 dq $(9.5,7)$	8,10	9b
						b 3.20 dq $(9,7)$		10		b 3.28 dq $(9.5,7)$	8,10	10
10					15.3	0.96 t (7)	9			1.09 t (7)	9	
1'	138.5				138.5				138.2			
$2^{\prime}, 6^{\prime}$	128.9	6.87 d (8.5)	$5,3^{\prime}, 4^{\prime}, 6^{\prime}$	$3{ }^{\prime}$	129.5	6.81 d (8.5)	5,4', 6^{\prime}			6.79 d (8.5)	5,4', 6^{\prime}	
$3^{\prime}, 5^{\prime}$	116.0	6.62 d (8.5)	$1^{\prime}, 4^{\prime}, 5^{\prime}$		115.8	6.65 d (8.5)	$1^{\prime}, 4^{\prime}, 5^{\prime}$		115.8	6.68 d (8.5)	$1^{\prime}, 4^{\prime}, 5^{\prime}$	
4'	156.6				156.3				156.5			
$1 "$	149.8				151.6				151.5			
$2^{\prime \prime}, 6^{\prime \prime}$	106.6	6.21 d (2)	6,3", $4^{\prime \prime}, 6^{\prime \prime}$	$2^{\prime \prime}$	106.6	6.09 d (2)	6,3", $4^{\prime \prime}, 6^{\prime \prime}$		106.2	$5.73 \mathrm{~d}(2)$	6,3", $4^{\prime \prime}, 6^{\prime \prime}$	
$3^{\prime \prime}, 5^{\prime \prime}$	159.6				159.3				159.2			
$4 \prime$	101.6	6.09 t (2)	$2^{\prime \prime}, 3^{\prime \prime}$		101.3	6.07 t (2)	$2^{\prime \prime}, 3^{\prime \prime}$		101.2	5.99 t (2)	$2^{\prime \prime}, 3^{\prime \prime}$	
1"'	130.3				132.8				133.3			
$2^{\prime \prime \prime}, 6^{\prime \prime \prime}$	131.2	7.11 d (8.5)	8,4"', $6^{\prime \prime \prime}$	$3^{\prime \prime \prime}$	130.5	6.95 d (8.5)	8,4"',6"'		130.5	6.66 d (8.5)	8,3"', $4^{\prime \prime \prime}, 6^{\prime \prime \prime}$	
$3^{\prime \prime \prime}, 5^{\prime \prime \prime}$	116.0	6.59 d (8.5)	$1^{\prime \prime \prime}, 4^{\prime \prime}, 5^{\prime \prime \prime}$		115.8	6.12 d (8.5)	$1^{\prime \prime \prime}, 4^{\prime \prime \prime}, 5^{\prime \prime}$		115.8	6.60 d (8.5)	$1^{\prime \prime \prime}, 4^{\prime \prime \prime}, 5^{\prime \prime}$	
4"'	156.5				158.0				157.9			

${ }^{\text {a }}$ Assignments based on 2D experiments. ${ }^{\mathrm{b}}$ Spectrum measured at $0^{\circ} \mathrm{C}$.
at C-5 and C-6 was similar to those of compounds $\mathbf{2}$ and $\mathbf{3}$ owing to the NOESY cross-peaks $\mathrm{H}-6 / \mathrm{H}-2^{\prime}$ and $\mathrm{H}-5 / \mathrm{H}-2^{\prime \prime}$. In the spectrum at low temperature, the correlation between $\mathrm{H}-1$ and and $\mathrm{H}-2^{\prime \prime \prime}$ was absent, indicating that the E ring was no longer close to ring A. This was also supported by the lowfield shift (about 1 ppm) of H-1 in 4 compared to $\mathrm{H}-1$ in 3 . Conversely, ring E was close to ring D as shown by the correlations $\mathrm{H}-6 / \mathrm{H}-2^{\prime \prime \prime}$ and $\mathrm{H}-6 / \mathrm{H}-8$. These correlations further indicated a $\mathrm{H}-7 \beta$ configuration similar to that of $\mathbf{3}$. Therefore, compound 4 varied from 3 only by the configuration of $\mathrm{C}-8$. The C-8R configuration was confirmed by the cross-peak $\mathrm{H}-7 / \mathrm{H}-2^{\prime \prime \prime}$ and $\mathrm{H}-8 / \mathrm{H}-2^{\prime}$, which, in addition to those mentioned above, could be observed only for the C-8R isomer. Compounds $\mathbf{3}$ and 4 may be artifacts derived from $\mathbf{2}$ and/or $\mathbf{5}$ by addition of EtOH during extraction.

Experimental Section

General Experimental Procedures. Optical rotations at $20^{\circ} \mathrm{C}$ were obtained on a Perkin-Elmer 241 polarimeter. Spectra were recorded as follows: UV (MeOH), Varian Cary 100; NMR, Bruker AC $250\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR spectra) and AMX 400 (2D NMR spectra); HREIMS, Kratos MS 9. Vacuum-liquid chromatography (VLC) and column chromatography, Si gel Merck 60 H . Semi preparative HPLC, col umn UItrasphere C ${ }_{18}$ ($10 \times 250 \mathrm{~mm}$), $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(40: 60)$, flow rate $3 \mathrm{~mL} / \mathrm{mn}$, UV detection.

Plant Material. Climbing stems of Cissus quadrangularis (Vitaceae) were collected in J une 1997, on Ondo Road, Ife-I fe, Nigeria. The material was identified and authenticated by Mr. G. A. Adesakin of the Herbarium, Department of Pharmacognosy, Obafemi Awol owo University, Ile-Ife, Nigeria. A voucher specimen (CQ/Pharm cog/12) is deposited at the Herbarium of the Department of Pharmacognosy, Obafemi Awolowo University, Ile-Ife, Nigeria.

Extraction and Isolation. The dried plant material (10 kg) was extracted with with $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(4: 1)$, yiel ding a crude extract (87 g) that was partitioned beween $\mathrm{H}_{2} \mathrm{O}$ and n -hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, EtOAc, and BuOH, successively. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract $(4 \mathrm{~g})$ afforded an insoluble fraction, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, yielding quercetin (210 mg). The EtOAc extract
(28 g) was fractionated by VLC using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing increasing amounts of MeOH . The fraction eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (95:5) was chromatographed on a Si gel column with n-heptane-EtOAc (4:1) yielding resveratrol (50 mg), piceatannol (20 mg), and kaempferol (30 mg). The fraction eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(90-10)$ was submitted to successive col umn chromatography and HPLC, yielding quadranguIarin A (2) [90 mg; (1) column chromatography EtOAc-MeOH 99:1; (2) semi preparative HPLC], a mixture of quadrangularins B (3) and C (4) $\left[60 \mathrm{mg}\right.$; (1) column chromatography $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ MeOH 99:1; (2) semipreparative HPLC], parthenocissin A (2) [70 mg; (1) column chromatography EtOAc-MeOH 99:1. (2) semipreparative HPLC], and pallidol (1) (55 mg ; (1) column chromatography EtOAc-MeOH 98:2; (2), semipreparative HPLC]. The mixture of $\mathbf{3}$ and $\mathbf{4}$ was further separated by semi preparative HPLC on an analytical column (Novapak C_{18}, $4 \times 125, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 35: 75$, flow rate $1 \mathrm{~mL} / \mathrm{mn}$, UV detection) yielding $\mathbf{3}(4 \mathrm{mg})$ and $\mathbf{4}(8 \mathrm{mg})$. The known stilbenes resveratrol, piceatannol, and pallidol were identified by comparison of their NMR data with those reported. ${ }^{5-7}$

Quadrangularin A (2): amorphous gum, $[\alpha]_{\mathrm{D}}-2^{\circ}(\mathrm{MeOH})$; UV $\lambda_{\text {max }}(\log \epsilon) 226$ (sh) (4.68), 290 (sh) (4.25), 322 (4.39), 345 (sh) (4.25) nm; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; HREIMS m/z 454.1418, $\mathrm{M}^{+}\left(\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{O}_{6}, \Delta 0.2 \mathrm{mmu}\right)$.

Quadrangularin B (3): amorphous gum, $[\alpha]_{D} 0^{\circ}(\mathrm{MeOH})$; UV $\lambda_{\text {max }}(\log \epsilon) 226$ (sh) (4.68), 280 (3.87) nm; ${ }^{1 \mathrm{H}}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; EIMS m/z 454, [M - $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]^{+}$.

Quadrangularin C (4): amorphous gum, $[\alpha]_{\mathrm{D}}-1^{\circ}(\mathrm{MeOH})$; UV $\lambda_{\text {max }}(\log \epsilon) 226$ (sh) (4.68), 280 (3.87) nm; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; EIMS m/z 454, [M - $\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]^{+}$.

References and Notes

(1) Bhutani, K. K.; Kapoor, R.; Atal, C. K. Phytochemistry 1984, 23, 407410.
(2) Gupta, M. M.; Verma, R. K. Phytochemistry 1990, 29, 336-337.
(3) Tanaka, T.; I inuma, M.; Murata, H. Phytochemistry 1998, 48, 10451049.
(4) Oshima, Y.; Ueno, Y. Phytochemistry 1993, 33, 179-182.
(5) Nakajimah, K.,Taguchi, H.; Endo, T.; Y osioka, I. Chem. Pharm. Bull. 1978, 26, 3050-3057.
(6) Kashiwada, Y.; Nonaka, G.; Nishioka, I. Chem. Pharm. Bull. 1984, 32, 3501-3317.
(7) Ohyama, M.;Tanaka, T.; I inuma, M.; Gorro, K. Chem. Pharm. Bull. 1994, 46, 2117-2120.
NP9902744

[^0]: * To whom correspondence should be addressed. Tel.: 33169823090. Fax: 33169077247. E-mail: Mary.Pais@icsn.cnrs-gif.fr.
 ${ }^{\dagger}$ Institut de Chimie des Substances Naturelles, C.N.R.S.
 ${ }^{\ddagger}$ Present address: Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria.
 § Department of Pharmacognosy, Obafemi Awolowo University.

